A self-organizing electronic system and method that organizes and repairs itself. A number circuit of modules can be embedded in a fabric. Each circuit module can calculate some function of its inputs and produces an output, which is encoded on volatile memory held together by a plasticity rule. The plasticity rule allows circuit modules to converge to any possible functional state defined by the structure of the information being processed. Flow through the system gates energy dissipation of the individual circuit modules. Circuit modules receiving high flow become locked in their functional states while circuit modules receiving little or no flow mutate in search of better configurations. These principles can be utilized to configure the state of any functional element within the system, and can be abstracted to higher levels of organization. Far from expending energy on state configurations, a volatile system only expends energy stabilizing successful configurations. Continuous stabilization coupled with redundancy results in a circuit capable of healing itself from the bottom-up.